Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Thermodynamical and Mechanical Approach Towards a Variable Valve Train for the Controlled Auto Ignition Combustion Process

2005-04-11
2005-01-0762
Controlled Auto Ignition (CAI) as a promising future combustion process is a concept to strongly reduce fuel consumption as well as NOx emissions. The acceptance and the potential of this combustion process depends on the possible CAI operation range in the engine map and the fuel consumption benefit, as well as the complexity of the variable valve train which is necessary to realize the CAI combustion process. The thermodynamic investigations presented in this paper were done on an engine equipped with an electromechanical valve train (EMVT), featuring Port Fuel Injection (PFI) and direct Injection. They show that the electromechanical valve train is an excellent platform for developing the CAI process. Controlled Auto Ignition has been realized with port fuel injection in a speed range between 1000 and 4500 rpm and in a load range between approximately 1 and 6 bar BMEP (about 5 bar BMEP for pressure gradients lower than 3 bar/°CA) depending on engine speed.
Technical Paper

Design, Development and Testing of Multi-Cylinder Hydraulic Free-Piston Engines

2005-04-11
2005-01-1167
A hydraulic free-piston engine (FPE), which converts combustion energy directly to hydraulic energy, is being developed by the U. S. EPA due to its potential as a lower-cost and higher-efficiency prime mover for hydraulic series hybrid vehicles. Two prototype engines were designed, fabricated and tested: a two-cylinder engine operating primarily with a two-stroke compression-ignition, direct-injection (CIDI) cycle and a six-cylinder engine operating with a four-stroke CIDI cycle. These engines successfully achieved up to 39% peak hydraulic efficiency under continuously fired operation, while demonstrating exceptional repeatability and control of the cylinder compression ratio. A basic description of the engine design, along with the initial test results from these two prototypes, is presented below.
Technical Paper

Opposed Piston Opposed Cylinder (opoc™) 5/10 kW Heavy Fuel Engine for UAVs and APUs

2006-04-03
2006-01-0278
The opposed piston opposed cylinder (opoc™) engine concept has been demonstrated as an engine concept with high specific power density and high power to volume ratio. The engine has several potential applications, including use as an auxiliary power unit (APU) in various commercial and military applications and as the primary power source for small unmanned air vehicles (UAVs). An engine in this power range operating on heavy fuels (e.g. JP5, JP8, DF2) is not typically available. The engine uses a two-cycle supercharged uniflow scavenging system with asymmetric port timing and will run at speeds between 8,000 and 12,000 rpm. The unique design of the opoc™ engine produces a piston speed that is half the speed of a typical crankshaft engine running at the same speed. Uniflow scavenging produces gas exchange efficiencies rivaling those of four-cycle engines. The design also leads to reduced in-cylinder heat losses. Furthermore, the opoc™ engine is fully balanced.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

Downsizing of Diesel Engines: 3-Cylinder / 4-Cylinder

2000-03-06
2000-01-0990
Due to the future application of combustion engines in small and hybrid vehicles, the demand for high efficiency with low mass and compact engine design is of prime importance. The diesel engine, with its outstanding thermal efficiency, is a well suited candidate for such applications. In order to realize these targets, future diesel engines will need to have increasingly higher specific output combined with increased power to weight ratios. This is therefore driving the need for new designs of 3 and/or 4 cylinder, small bore engines of low displacement, sub 1.5l. Recent work on combustion development, has shown that combustion systems, ports, valves and injector sizes are available for bore sizes down to 65 mm.
Technical Paper

Benefits of the Electromechanical Valve Train in Vehicle Operation

2000-03-06
2000-01-1223
One of the most promising methods to reduce fuel consumption is to use unthrottled engine operation, where load control occurs by means of variable valve timing with an electromechanical valve train (EMV) system. This method allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel-ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way-catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement is made possible from the start of the first cycle. A load control strategy using a “Late Intake Valve Open” (LIO) provides a reduction in start-up HC emissions of approximately 60%.
Technical Paper

Analysis of the Particle Size Distribution in the Cylinder of a Common Rail DI Diesel Engine During Combustion and Expansion

2000-06-19
2000-01-1999
In the recent years diesel engine developers and manufacturers achieved a great progress in reducing the most important diesel engine pollutants, NOX and particulates. But nevertheless big efforts in diesel engine development are necessary to meet with the more stringent future emission regulations. To improve the knowledge about particle formation and emission an insight in the cylinder is necessary. By using the fast gas sampling technique samples from the cylinder were taken as a function of crank angle and analyzed regarding the soot particle size distribution and the particle mass. The particle size distribution was measured by a conventional SMPS. Under steady state conditions the influence of aromatic and oxygen content in the fuel on in-cylinder particle size distribution and particle mass inside a modern 4V-CR-DI-diesel-engine were determined. After injection and ignition, mainly small soot particles were formed which grow and in the later combustion phase coagulate.
Technical Paper

Low fuel consumption and low emissions~Electromechanical valve train in vehicle operation

2000-06-12
2000-05-0018
The electromechanical valve train (EMV) technology allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement can be used for each individual cylinder and engine cycle. A load control strategy using a "Late Intake Valve Open" (LIO) provides a reduction in start-up HC emissions of approximately 60%. Due to reduced wall-wetting, the LIO control strategy improves the transition from start to idle.
Technical Paper

Evaluation of Crankshaft Clearance Influence on Specific Roughness Noise Concern

1999-05-17
1999-01-1771
Passenger car customer expects both: low interior noise level and a sound quality, adapted to vehicle driving condition. The latter should be based upon a comfortable sound character without outstanding noise effects. One of the very unpleasant noise characteristics is roughness, also called rap noise or rumbling noise. Beside intake noise and powertrain structure bending, the dynamic crank train behaviour is one of the potential origins of a rough noise pattern. Material properties of the crankshaft and the layout of crankshaft damper can influence roughness as well as the crank train clearances. Subjects of this study, which was performed on a 4-cylinder spark-ignition (SI) engine, were the identification and objectivation of a specific noise concern which occurred during vehicle acceleration. Aim was to evaluate the noise concern sensitivity to the crank train clearances and to define optimum clearance ranges for noise quality improvement.
Technical Paper

Low Emission and Fuel Consumption Natural Gas Engines with High Power Density for Stationary and Heavy-Duty Application

1999-08-17
1999-01-2896
Today, natural gas engines for stationary and vehicular applications are not only faced with stringent emission legislation, but also with increasing requirements for power density and efficient fuel consumption. For vehicular use, downsizing is an advantageous approach to lowering on-road fuel consumption and making gas engines more competitive with their diesel counterparts. In SI-engines, the power density at a given compression ratio is limited by knocking, or NOx emissions. A decrease in compression ratio, lowering both NOx emissions and the risk of knocking combustion, increases fuel consumption. An increase in air-fuel-ratio, required to avoid knocking at higher thermal loading, increases boost pressure, HC and CO emissions, and mechanical loading and causes the danger of misfiring. As a result, the performance of the latest production gas engines for vehicles remains at a BMEP of 18…20 bar with a NOx emission level of 2…5 g/kWh.
Technical Paper

Interpretation Tools and Concepts for the Heat Management in the Drive Train of the Future

2011-04-12
2011-01-0650
Thermal management describes measures that result in the improved engine or vehicle operation in terms of energetics and thermo mechanics. In this context the involvement of the entire power train becomes more important as the interaction between engine, transmission and temperature sensitive battery package (of hybrid vehicles or electric vehicles with range extender) or the utilization of exhaust gas thermal energy play a major role for future power train concepts. The aim of thermal management strategies is to reduce fuel consumption while simultaneously increasing the comfort under consideration of all temperature limits. In this case it is essential to actively control the heat flow, in order to attain the optimal temperature distribution in the power train components.
Technical Paper

Exhaust Heat Recovery System for Modern Cars

2001-03-05
2001-01-1020
The fuel consumption and the emissions of modern passenger cars are highly affected by the fluid and material temperatures of the engine. Unfortunately, the high thermal efficiencies of Direct Injection (DI) Diesel and Spark Ignition (SI) engines cause in many driving situations low heat transfer to the engine components and especially to the oil and the coolant. In these conditions the normal operating temperatures are not achieved. Especially at low ambient temperatures and low engine loads the requirement of a comfortable cabin heating and a fast warm-up of engine oil and coolant cannot be satisfied simultaneously. To reach the required warm-up performance, an Exhaust Heat Recovery System (EHRS) will be demonstrated. Further design and optimization processes for modern cooling systems in fuel-efficient engines require numerical and experimental investigations of supplemental heater systems to meet all requirements under all circumstances.
X